Oraux; Série n°1

Exercice 1 Dans un corps \mathbb{K} , un élément a est une puissance n-ième s'il existe $b \in \mathbb{K}$ tel que $a = b^n$. Pour chaque corps $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$, déterminer soigneusement les éléments a tels que pour tout $n \in \mathbb{N}^*$, a soit une puissance n-ième.

Exercice 2 [CCP MP 2023] Soient
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$.

- 1. Quel est le rang de A? Donner une base de l'image de A.
- 2. Donner une équation de l'image de A. Le vecteur B appartient-il à l'image de A? Ind : Déterminer l'orthogonal de $\operatorname{Im} A$.

Exercice 3 [IMT 2023] Nature de la série $\sum \cos \left(n^2 \pi \ln \left(\frac{n-1}{n}\right)\right)$?

Exercice 4 [Centrale 2023] Soit $(T_n)_{n\in\mathbb{N}}$ la suite de polynômes réels définie par $T_0(X)=1,\ T_1(X)=X$ et pour $n\in\mathbb{N},\ T_{n+2}(X)=2XT_{n+1}(X)-T_n(X)$. On considère l'équation différentielle $(E)\colon (1-x^2)P^{'2}=n^2(1-P^2)$.

- 1. Montrer que, pour $n \in \mathbb{N}$, $\forall \theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.
- 2. Montrer que $T_n \circ T_m = T_m \circ T_n$ pour $(m, n) \in \mathbb{N}^2$.
- 3. Montrer que, pour $n \ge m$, $2T_nT_m = T_{n+m} + T_{n-m}$.
- 4. Montrer que, pour $n \in \mathbb{N}$, T_n et $-T_n$ sont solutions de (E) sur \mathbb{R} .
 - 5. Montrer que tout polynôme solution de (E) est de degré n, puis déterminer les polynômes solution de (E) sur \mathbb{R} .

Exercice 5 [MINES 2023] Soient $p, q \in \mathbb{C}$. On note x_1, x_2 et x_3 les racines (non nécessairement distinctes) du polynôme $X^3 + pX + q$. Pour $j \in \mathbb{N}$, on pose $N_j = x_1^j + x_2^j + x_3^j$.

1. Que valent N_0, N_1, N_2, N_3 ?

2. Calculer, pour $n \in \mathbb{N}^*$, $\det(N_{i+j-2})_{1 \leq i,j \leq n}$.

Exercice 6 [MINES 2023] Soient $m, n \in \mathbb{N}^*$ tel que $m \leq \frac{n}{2}$. On se donne deux urnes contenant chacune des boules numérotées de 1 à n. On tire m boules dans chaque urne et l'on note X le nombre de doublons. Calculer la loi de X puis sa variance.

Exercice 7 [ENS 2023] Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue et presque périodique c'est-à-dire telle que, pour tout $\epsilon > 0$, il existe T > 0 tel que : $\forall x \in \mathbb{R}^+, \forall n \in \mathbb{N}, |f(x+nT) - f(x)| \le \epsilon$. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue et presque périodique.

- 1. Montrer que f est uniformément continue sur \mathbb{R}^+ .
- 2. Montrer que $t \mapsto \frac{1}{t} \int_0^t f$ possède une limite en $+\infty$.

Ind : Comment caractériser séquentiellement l'absence de limite d'une fonction?

Exercice 8 [X MP 2023] Soient E un \mathbb{R} -espace vectoriel de dimension finie, $p, u \in \mathcal{L}(E)$. On suppose que p est un projecteur et que pu + up = u. Montrer que $\operatorname{tr}(u) = 0$.

Oraux; Série n°1

Exercice 1 Dans un corps \mathbb{K} , un élément a est une puissance n-ième s'il existe $b \in \mathbb{K}$ tel que $a = b^n$. Pour chaque corps $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$, déterminer soigneusement les éléments a tels que pour tout $n \in \mathbb{N}^*$, a soit une puissance n-ième.

Exercice 2 [CCP MP 2023] Soient $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$.

- 1. Quel est le rang de A? Donner une base de l'image de A.
- 2. Donner une équation de l'image de A. Le vecteur B appartient-il à l'image de A? Ind : Déterminer l'orthogonal de Im A.

Exercice 3 [IMT 2023] Nature de la série $\sum \cos \left(n^2 \pi \ln \left(\frac{n-1}{n}\right)\right)$?

Exercice 4 [Centrale 2023] Soit $(T_n)_{n\in\mathbb{N}}$ la suite de polynômes réels définie par $T_0(X)=1,\ T_1(X)=X$ et pour $n\in\mathbb{N},\ T_{n+2}(X)=2XT_{n+1}(X)-T_n(X)$. On considère l'équation différentielle $(E):(1-x^2)P^{'2}=n^2(1-P^2)$.

- 1. Montrer que, pour $n \in \mathbb{N}$, $\forall \theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.
- 2. Montrer que $T_n \circ T_m = T_m \circ T_n$ pour $(m, n) \in \mathbb{N}^2$.
- 3. Montrer que, pour $n \ge m$, $2T_nT_m = T_{n+m} + T_{n-m}$.
- 4. Montrer que, pour $n \in \mathbb{N}$, T_n et $-T_n$ sont solutions de (E) sur \mathbb{R} .
- 5. Montrer que tout polynôme solution de (E) est de degré n, puis déterminer les polynômes solution de (E) sur \mathbb{R} .

Exercice 5 [MINES 2023] Soient $p, q \in \mathbb{C}$. On note x_1, x_2 et x_3 les racines (non nécessairement distinctes) du polynôme $X^3 + pX + q$. Pour $j \in \mathbb{N}$, on pose $N_j = x_1^j + x_2^j + x_3^j$.

1. Que valent N_0, N_1, N_2, N_3 ?

2. Calculer, pour $n \in \mathbb{N}^*$, $\det(N_{i+j-2})_{1 \leq i,j \leq n}$.

Exercice 6 [MINES 2023] Soient $m, n \in \mathbb{N}^*$ tel que $m \leq \frac{n}{2}$. On se donne deux urnes contenant chacune des boules numérotées de 1 à n. On tire m boules dans chaque urne et l'on note X le nombre de doublons. Calculer la loi de X puis sa variance.

Exercice 7 [ENS 2023] Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue et presque périodique c'est-à-dire telle que, pour tout $\epsilon > 0$, il existe T > 0 tel que : $\forall x \in \mathbb{R}^+, \forall n \in \mathbb{N}, |f(x+nT) - f(x)| \le \epsilon$. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue et presque périodique.

- 1. Montrer que f est uniformément continue sur \mathbb{R}^+ .
- 2. Montrer que $t \mapsto \frac{1}{t} \int_0^t f$ possède une limite en $+\infty$.

Ind : Comment caractériser séquentiellement l'absence de limite d'une fonction?

Exercice 8 [X MP 2023] Soient E un \mathbb{R} -espace vectoriel de dimension finie, $p, u \in \mathcal{L}(E)$. On suppose que p est un projecteur et que pu + up = u. Montrer que $\operatorname{tr}(u) = 0$.